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1.\ Balanced Incomplete Block (b.i.b.) designs with v = s~ k=s"

and
siH—1 smH_ 1

vy = N

=1 k=51

can always be constructed by taking (N — m)-flats as blocks and points
as varieties from the.spaces EG (N, p* =) and PG (N, p" = s) res-
pectively when .
A — Gl § N C i S

E1—1)...(s—=1

. (Bose, 1939). While introducing Partially Balanced Incomplete Block
(p.b.i.b.) designs Bose and Nair (1939) have pointed out that in certain
cases p.b.i.b. designs can be formed by cutting out one point and all
(N — m)-flats passing through this point from the space EG (N, p*= s)
or PG (N, p*=ys), and then taking the retained (N — m)-flats as our
blocks and the retained points as our varieties. Thus from the geo-
metrical b.i.b. designs with A = 1; k =24 s+ l,ors2and A'=s - 1
p.b.i.b. designs can always be obtained by cutting out a variety and
all the blocks containing the variety. It has also been shown by them
that p.b.i.b. designs can be formed by cutting out

(a) all the points lying on a line, and all planes passing through
this line of PG (3, p®), and then identifying our varieties,
with the retained points and the blocks with the retained
planes (p. 361);

(b) all points lying on a line, and all lines passing through points
- of this line of PG (3, p"), and then identifying the varieties
with points and blocks with lines (p. 362); and

(¢) all points on three non-concurrent lines, and all lines through
the points of intersection of these lines of PG (2, p*) two
by two, and then identifying the blocks with retained straight
lines . and the varieties with the retained points (p. 363).

Recently Shrikhande (1952 @) has mentioned that p.b.i.b. designs
-can be obtained by cutting out a particular variety and all the blocks
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containing that variety from the symmetrical b.i.b. designs with k£ = 4,
5,6,8, 9, 10 and A =1. It has also been observed by him that
p.b.i.b. designs can be obtained by cutting out a variety and all the
blocks containing that variety from the b.i.b. designs with

_ v=b=(kz—kf:2)/2, r=k, A=2

The object of the present paper is to study general relation between
b.i.b. and p.b.i.b. designs. It will be shown that in certain cases there
exist one-to-one correspondence between b.i.b. and p.b.i.b. designs,
and one design can easily be constructed from the other.

2. Lemma I.—Suppose we have a design with v.r. units of v varieties,
. ‘ 2 ¢
each variety being replicated r times in b = J bu blocks, each of the
T o c L=1

b blocks being of size ki (L = 1, 2), such that every pﬁir of varieties
occurs exactly X times. If now b, blocks constitute a p.b.i.b. design
with parameters -

vV =v,b =by 1 =r, K=k, }

i 2.1
R;, Ai: piii'a is ja jlzl, 2,....,}71 .
then the remaining b, blocks of the original design will always be a p.b.ib.
design with parameters

VE =, b* =by, r¥ =1 —ry, k¥ =k,
¥ = iy, N = A — Ay, 2.2)

s omeinl Coe
P ="y L L =12, ...,m

The proof directly follows from the fact that the two parts of the
original design together must be a design in which every pair of varieties
should occur A times and therefore any variety Q which occurs A;
times with a selected variety ¢ in one part must occur A — A, times
in the other part. Similar argument holds for pi;’s.

Here it may be mentioned that in some cases when some 2; is
zero one of the two parts (2.1) and (2.2) may be disconnected but both
the parts can never be so simultaneously. This is of practical importance
as the necessary and sufficient condition for every treatment contrast
to be estimable is that the design should be connected (Bose, 1947).

Corollary.—Corresponding to every p.b.i.b.. design with parameters
v, b, 1, k, oy, A, pYys 1,0, 0" =1, 2,....,m and in which there is
no two identical blocks, there is another p.b.i.b. design with parameters.
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VE=9, b* ="C, — b, r* ="21Cpy — 1, k¥ =k .

% * __ v-2
= Ryeiiy, A* =" Crg — Ayt

i % m—itl T
pij.i' =p + m—j+1 m—j"+1> L, JJ] = 1, 2, ...... , M.

In connection with the Lemmadl it is interesting to note the follow-
ing Lemma, the proof of which is obvious.

Lemma II.—Suppose we have a bib. design with v, b, 1, k, A
and a p.bib. design with v, b', t', k, n;, A, iy, 1, J, i = 1,2, ..., m,
then by taking the two designs together we can always derive a p.b.i.b.
design with v¥ =v, b*=b 4+ b, r* =141,k n, A"=21+44,
phy¥=phy, 1, 5,1 =1,2,...,m

Corollary.—Corresponding to every bib. design with v = nk,
b=nr 1,k A there is a p.b.ib. design with v*¥ =nk, b* =nr
4+at, *=r4t ki=k n=k—1n=v—%k A=A+t
A = A, '

Ply= ” k—2 0 pYy =

0 k-1 ”
k—1 v-—-2k

0 v—k

>

which can be obtained simply by adding to the bi.b. design, t times the
set of n blocks obtained by writing down the v = nk varieties-in-n parts
with k varieties each.

Lemma I is of less practical importance as the number of replica-
tions in the new p.b.i.b. design” has unnecessarily’ been increased.

3. Theorem 1.—ff from a b.ib. (_}iésign with v, b, 1, k, A=1
(k > 2) all the blocks containing a particular variety are omitted, then
the truncated design will always be a p.b.i.b. design with parameters

V=v—1Lb=b—ri=r—1Kk=k
m=v—kn=k—24=12%=0
3B.D
v—2k—|—1k—2‘ Py =|v—k OH
0 k-3

k—2 0
Conversely if a p.b.i.b. design with parameters (3.1) exists, then a b.i.b.
design with parameters v =V + 1, b=D"+ r+1. r=1 +1,
k = k', X =1 can always be constructed. A

1, —
Py =

2

Proof —Consider the r blocks in which a particular variety Q,
say occurs. As A = I, any other variety occurs only once in theset




|
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of these r blocks. If we now delete the variety Q, then these r blocks

. will constitute a disconnected p.b.i.b. design with parameters

Vi=v—1Lb =r1r"=1Lk=k—1,
'n1=k—-2,nz=1’—k, A]_:l, A2=O,

Pry= ” 0 k—2 ’ '
k—2 v-2k+1 |

k—3 0
0 v—k

1 _—
Dy =

whereas the b.i.b. design will turn into a design with v* =y — 1,
b* = b + b";, r* =r" + r", in which b’ blocks are of size k and 3"
blocks are of size k — 1, but every variety pair occurs once. - There-
fore by Lemma I the proof of the first part of the theorem follows.

To prove. the converse let us suppose that a p.b.i.b. design with
parameters (3.1) is known. Now from r’' (k' — 1) = m, + nhg
we have (r —l) k—1)=v—korrtk—1)=v—1=1y. This
shows that v’ is a multiple of & — 1. In fact (' + 1) (k— 1) = v’
Now as the design (3.1) is a GD design (Bose and Connor, 1952), the
v’ varieties can be divided into r’ + 1 groups, each group containing
k — 1 varieties such that any two varieties of a group are sécond asso-
ciates whereas any two Varletles belonglng to two different groups are
first associates. Let us form r' + 1 blocks of size k — 1 taking k£ — 1
varieties of a group in a block Adding a new variety Q to each of
these (" + 1) blocks and keeping the other blocks of 3.1) unchanged
we get a b.a.b. design with parameters

v=v+1Lb=b+r+1L,r=r+1k=4Fk, =1

When & = 2 the design (3.1) reduces to the b.i.b. design v = v—1,
b=b—r,r"=r—1 k=2 A=1 In fact by omitting all the
blocks containing a particular variety, from a bib. design with v,
b ="Cy, r ="Cyy, A ="2C,, (in which all the combinations
of the varieties have completely been written down) we shall always
get a bib. design with

v* =V — 1, b* =1 Ck, r* = v-2 Ck—1, A* == "“3C’k_2.
Corollary 1.1.—The p.b.ib. design with parameters
v=b=35r=k=6n=30,nn=4A=1, 1 =0

e s

Py = H 25 4
3

4 0
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cannot exist as the b.i.b. design with v=236, b=42, r=17, k= 6;
A =1 does not.

Corollary 2.1.—The p.b.ib. design with parameters
v=14,b=28, r =6, k=3, n =12, n, =1, A;.= 1, 1,=0

T

1 —
Py =

10

|10 1

e .

has 69 sets -of -independent solutions which can be obtained from the 69
independent solutions of the b.i.b. design v =15,b =35, r=7,k =3,
A =-1 worked out by Fisher (1940).

In connection with the above theorem it is worth noting that if from
a -non-geometrical solution of a b.i.b. design with v =53 k = s%
A=s+1 or withv=s3+s2+s+Lk=s*+s+1LA=s5+1
all the -blocks containing a particular variety are omitted we may
not get a p.b.ib. des1gn as can be seen by omitting all the blocks
containing the variety ¢ 1° from the solution [e;a,']; of the b.i.b. design
y=>b=15,r =k =7, A = 3, worked out by Nandi (1946 b). Simi-
larly it can be shown that property analogous to (a) stated in the
introduction does not exist in case of non-geometrical solutions.

4, Shrikhande’s observation that p.b.i.b: designs can be obtained
by omitting a particular variety and all the blocks containing that variety
from the b.i.b. design with v =50 = (k? —k 4 2)[2, r =k, )\ =2
follows from the following considerations and Lemma 1.

Utilizing - the -weil-known property that any two blocks of a sym-
metrical b.i.b. design have just A treatments in common it can be shown
that by omitting a particular variety from the r blocks in’ which it
occurs and all the b-r blocks in which it does not occur we are al-
ways left with a p.b.i.b. design belonging to the series IT of Bose (1951)
w1th _parameters '

— k(i — D)2, b* =k, — 2 kb ke — 1, =2 (h—2),
ny= (ke —2) (K —3)2, & =1, }, =0,
4. 2(k—9 n
2e—4) (k—4) (k=52 .

k—3

. Phy=|
k—3 (x—3) (k—4)2

\ |

Now it is interesting to examine whether p.b.i.b. demgns can be
obtained by omiiting a variety and all the blocks "ontalmno that varicty
from the b.i.b. designs with
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v = (1) (=22, b k%—nﬂr*—kk = =2,
A - )_zzv o @

The strocture of (4.1) has been studied by Nandi (1946 a). and it has
been shown by him that-no two-blocks.can have more than two: varieties
in common.' - From this it is seen‘that if we consider. the set of..r¥
blocks obtained by omitting a particular variety and all the blocks ot
containing the variety we must have an arrangement with v =
k =Dk —2)2—1,0 =k, =72, k"=k— 3 in which no pair
of varieties occurs more than once. Let us examine whether this can
be a p.b.i.b. design with A; = 1, A, = 0. Bose (1951) has shown that
for a p.b.i.b. design with two replications and:'A, = 1, 4, =0, K" > ¢’
= 2, we must have v' = 4%/4 or b’ (b’ — 1)/2. From this and Lemma I
it follows that, if £ > 6, by omitting any variety and all the blocks con-
taining that variety from a design (4.1). we can never get a p.b.i.b. design
with two associate classes: - Even when k = 6, in general this method
of omission does not give a.p.b.i.b. design as can be seen by omitting
the variety ‘1’ -and all the blocks containing that variety- from. the
solution [a3] of V' = 10, 6" = 15,1 = 6, k' =-4,-} = 2;worked out
by Nandi (1946 ¢); but omitting the variety ¢ 10 and -a]l.the- blocks
containing ‘ 10’ from any of the solutions [ayy], [25], [Bey] We-get.a
p.b.ib. design with parameters

y=b=9,r=k=4,
no=ny=% A =2 A =T1"

ot

Lo, W
vty LR
o
o

By omitting a pafffculﬁf variety and all’ tﬁe' blocks: ‘cdnt'inmng'
that variety from the b.i.b. design v. = 6,.b = 10,.r.= 5,k = 3, A —2
we get the p.b.i.b. design v—~b—5 r =k.=3, nl.—nz,—Z

No=2, 0 =1, erno 1“-pwf-¢“1”;
. 10

1 1.0
Here it is 1nteresf1ng to note that by omlttlng a partlcular variety and
all the blocks not containing that. variety from the b.i.b. design
v=06 b=10,r=5k=3 A=2 we get the p.b.ib. design
v=b=5r=k=2, nl——no—2 A =1, A =0,

Rl TS

1 —
Dy =

s 200k

2.2

“Iiil
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which does not belong to any of the series I, II and III to which all the .

p.b.ib. designs with two associate classes and x > r =2 belong
(Bose, 1951). The solution for the last mentioned design is (I, 2),
, 3), 2, 49, (3, 5), (4, 5). It can be shown that there is only one
more p.b.ib. design with two associate classes involving two replica-
tions, and for which £ = 2. This belongs to the series I of Bose (1951)
and has parameters '

py=b=4 r=k=2
m=2n=1,x=1213=0

s A

.

5. An incomplete block design with v.r. units of v varieties there
beihg r units of each variety, arranged into » blocks of size k each is
said to be resolvable when the b blocks can be divided into r sets,
each set of blocks containing a complete replication of all varieties.
Such a design is called affine resolvable when each block of a set has
equal number of varieties in common with each of the blocks not in
the set.

Lemma IlI.—Any affine resolvable incomplete block arrangement
. with 4 _
v=mn¥m b=2nr=2 k=nmm@mm>1) (51

is a p.b.ib. design with barameters
v=mnm, b =2n r=2, k=nm,

m=m—1n=2m@n—1), ny=m{n— 1)
A=22=123=0,

ply=|m—2 0 0 Jipyr=| 0 m—1 0
0 2mnr—1) O - m—1 m (n—2) m (n—1)
0 0 m@®r—NDA, 0 m@m—1) m@n—1)n—2)
plr=1 O 0 m—1 ’

0 2m 2m (n—2)
m—1 2m'(n—2) m (n—2)*

The designs (5.2) have been constructed by Nair (1950) in affine resolv-
able form. The Lemma III states that any affine resolvable arrange-
ment with parameters (5.1) cannot be other than a p.b.i.b. design with

(5-2)
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parameters (5.2), the formal proof of which follows from the following
considerations :—

Any two blocks of an affine resolvable arrangement have exactly
m varieties in common unless they belong to the same replication when
they have none in common. This shows that nm varieties- occurring
in a block of any replication can be divided into n groups of m varieties
each, such that in the other replication the m varieties of a group occur
together in a block but any two varieties belonging to two different
groups do not.

Corollary.—Corresponding to every b.i.b. design with v = n%m,
b=nr, 1, k =nm, A there is a p.bib. design with

vE =n?m, b* =nr + 2nt, r¥ =r + 2t, k* = nm,
m=m-—1n=2mun—1), ng=m@ — 1)

=A42 A=A+t Ay = A

plﬁ’ =|lm—2 0 0 p2”’= 0 m—1 0
0 2m(mr—-1) O m—1 m(mn—2) m@mr—1)
0 0 m@E-=D2|, 0 mmn—1)mmur—1)n-2).
Py =1 0 0 m—1
o 2m 2m (n—2)

m—1  2m(n—2) m@n-—-2)2

which can be obtained by adding to the b.i.b. design, t times the two sets
of n blocks formed in the following manner. '

Distribute the n®*m varieties of the design in the n2 cells of a nxn
square so that every cell gets m varieties. Taking the rows and the
columns of this square as blocks we get the two sets of » blocks which
is nothing but the p.b.i.b. design (5. 2)

In connection with Lemma III it is interesting to note that any
affine resolvable incomplete block arrangement with v = n2m, b = 3n,
r =3, k =nm may not be a p.b.i.b. design, as can be seen from the
following example:—

(1,2 3,4, 56), (7,89, 10, 11, 12),
(1,23 7.8 9, S5, 6 10, 11, 12),
(1, 2, 4, 8, 10, 12), (3, 5, 6, 7, 9, 11).
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This is an-affine resolvable arrangement with v =12, b = 6 r=3,
= 6, but is not a p.b.i.b. design.

..Theorem 2.—If a solution of a b.Lb. design with parameters (M)
V.= nk b=nr, 1, k, A exists and the solution is such that it contains a
set of n blocks with a complete replication of all varieties, then by omitting
the set of. n blocks we shall always get a p.b.i.b. design with parameters

v’ =.nk"b’:7’l(r_1), r =r_1’ k' =k’
m=0—Dkmn=k—1A=4k=4-1. (53)

A P

: .I)ljj"zl (n _2)k k'—l ‘

k—1 0

Conversely, if a p.b.ib: design with parameters (5.3) exists, then a

solution for the b.ib. design (M) can always be constructed.
Proof—A set of - n blocks containing.a complete replication of

all the v = nk varieties is obv1ously a disconnected p.b.i. b design

with parameters . I

V' =nk, b = n, =1k =Kk

=k —1Ln=v—k A&=1,24=0,

| R e

, ]—H 0 (—1)k k—1 (n—2)k

(e

u

Therefore, By Lemma J, the proof-of the first part of the theorem follows.

To prove the converse, let us suppose that the p. b.i.b. design with
parameters (5.3) is known. Now, as the de51gn (5.3) is a GD design
(Bose and Connor, 1952), we can divide the v varieties into n groups
of k varieties. each in such a way that all the varieties of a group are
mutually second .associates whereas any two varieties belonging to
two dlfferent groups are first associates. Obviously, therefore, by
taking k varieties of a group in a block, we can form a set of »n blocks
with a complete replication of all varieties, which when taken together
w1th the blocks of the solution of (5.3) will give a b.i.b. design (M).

Corollary 1—A p.b.i.b. design with parameters
v=nk, b=mAr=mk=m—1)A+1,

=m—Dkn=k—=1, N =AA=42A—1,

=2k k=11 p¥y= “ n—Dk

Pl =
et o |,

el
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cannot exist:unless X is of the form ut 4 1, as it has been shown elsewhere
by the author (Roy, 1952) that the b.ib. design (R): v = nk,
b=n@\ 4+ 1), r=nx+1,k=m—1)A+4+1, X cannot have a
single set of n blocks providing a complete replication of- all varieties
unless A is of the form nt + 1. .

Corbllar.jz 2.—The p-b.i.b. design with parametérs
v=8,b=12, r =6, k =4,
m=4, =3 N=2 A=1,

Phy = \ 0 3 Pl = ” 4 0 "
'3 o, 0 ﬂ

has exactly three independent solutions as Nandi (1946 b) has shown
that the b.ib. design v=28, b=14, t =7, k=4, A =3 has just
three independent solutions (namely [a,], [8,] and ['y]) with one or more
replications of all varieties.

Theorem 3.—If a solution of a b.i.b. design with parameters »
v=mm, b=mnr, 1, k=mm AX(m#1D) (5.9

contains two sets of n blocks each, each set providing a complete replica-
tion of all varieties in such a way that each block of a set has equal number
of varieties in common with every block of the other set, then by omitting
the two sets of blocks we shall always get a p.b.i.b. design with para-
meters

V=nmb =n@lt—2),r=r—2,k =mm (5.5
m=mn—DL nn=2mn—1), ny=m — 1,
A=ALAa=A—-1A=1—-2

pliy=[mn—2) 2mm—2) m-—-1|p*=|mmu—1)(n—2) m(n—1) 0

2m(n—2) 2m 0 mn—1) mn—2) m—1|
 m—1 0 o |, 0 m—1 0]
piy = m@m—1)2 0 0
. 0 2m (n—1) 0
o . 0  m-2

The. proof of the thebrem,.folibws from the Lemmas III andI.




T

40 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

It was expected that the converse of the Theorem 3 will also be ‘
true (Science and Culture, 1953, 19, 40-41) but it has not been possible

to prove this converse in its complete generality. The present position

stands as follows:—

Existence of (5.5) implies the Existence of (5.4) when
n#4. The Case of n =4 requires Further Investigation.

Proof—(i) p333 =m — 2 =ng — 1 shows that every variety with
its m — 1 third associates form a complete sub-group such that any
two varieties of the sub-group are third associates, and as such the
n%m varieties of the design are divisible into »n® sub-groups each con-
taining m varieties which are mutually third associates.

(ii) p3,, = n, shows that varieties which are second associates
of a chosen variety are also second associates of all the third associates
of the chosen variety.

(i) Similarly p3%, =m#, shows that varieties which are first
associates of a chosen variety are also first associates of all the third
associates of the chosen variety. (It may be noted that any two-of the ‘
three conditions imply the third.) {

From the above considerations it follows that all the n%m varieties ;
are always divisible into »% sub-groups of m varieties each such that . |
the varieties of a sub-group are mutually third associates whereas all
of them are either first or second associates of all the varieties of any
other sub-group. This means that if 8 is a variety belonging to a sub-
group 0, then the remaining »#* — 1 sub-groups of third associates
are divisible into two sets—one containing 2 (n — 1) sub-groups varie-
ties of which are all second associates of the varieties of 6,;, and the
other containing (n — 1)? sub-groups varieties of which are all first
associates of all the varieties of 8. This shows that in respect of
association we can speak in terms of a sub-group in the sense of the
varieties of the sub-group.

Let ¢ be a second associate of 8, and 6;, be the sub-group to which
#.belongs. p2,, = (n — 2) m shows that among the 2n — 3 sub-groups
(excluding 6,,) of the second associates of 6, there are just n — 2 sub.
gtoups which are also seeond associates of 6;,. Let these n — 2 sub-
groups be Oy, 0,4, ..., 05, and the remaining (» — 1) sub-groups
of second associates of: 8, i.e., of 8;; be 05, 8,,..., 0,,. It may be
noted that all of @y, 84,..., 0, are first associates of 6,,.

Let ¢ be a variety belonging to 6, (i > 1). Obviously ¢ and
are first associates.. Now #6;, being second associates of both ¢ and. ¢,
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there cannot be more than one sub-group among 0y, 04, ..., 01,
varieties of which are second associates of i due to the restriction
p122' = 2m. Again when there is one sub-group, 6y, say, whose varie-
ties are second associates of i, there must be just one sub-group, 0,
say, among 0y, 05, ..., 0;— 01y, ..., 0, whose varieties are first
associates of ¢, as ¢ must have just (n — 1) m first associates among
the second associates of 8 [as p%, =m(n — 1)].

On the other hand, for similar reasons, in such a situation 0
can have no first associate among Oy, 0s, ..., 01y, Ost1as - - o5 Onos
other than 6. 1In such a case, therefore, 6,, and 6, have at least
6,(G=23,...,n but j%=iors) [(m—2)m varieties in number]
as their common second associates. This is possible only when
Plas= (n — 2) m, ie., when n<<4, as p'yp = 2m. - Butit is easy to see
that such a situation cannot arise when n << 4. Thus it follows that
when n## 4, 0, (for all i > 1) has all of 6, (¢t =2, ...,n) as its first
associates. Consequently, and as p%,=(#m —2)m, any two of
(611, B335 Baps . .5 0,y or of (614, B4y, ..., 61,) are second associates.
If 6, O, ..., 0, be the remaining (n — 1) m second associates of
6, it also follows that all of them are first associates of 8, (i~ i)
and any ‘two of (0, 0, ..., 8;,) are second associates. -Similarly if
O, B3, ..., 0, be the remaining (n — 1) m second associates of 8,
all of By, 0, ..., 0, are first associates of 6y (1% ¢') and any two
of (64 Ba, --., 0,) are second associates. Moreover as 6;; and 6,
must have one sub-group of second associates in common in addition
to 8y, without loss of generality 8, can be taken as the common sub-

group of second associates of 6, and 6;;,. From what has been dis-

cussed above it may be noted that the design (5.5) has properties by
virtue of which its n?m varieties, when n# 4, can be arranged in the
following nxn schematic arrangement (8, representing a complete
sub-group of third associates as indicated above) such that-any two
varieties occurring in a cell are mutually third associates, any two
varieties occurring in two different cells of a row or of a column are
second associates, and any two varieties not occurring in a cell or in
cells of a row or of a column are first associates.

Now if we form a set of 2n blocks by taking the rows and columns
of the scheme as blocks we obviously get an arrangement of the n%m
varieties each being replicated twice, in blocks of size nm such that any
two third associates occur together twice, any two second associates
occur together once and the first associates do not occur together 4t all.
This shows that addition of this set of 2n blocks to the design (5 5)
will give.the design (5.4).



42 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

011 fis. 03 O1n
021 022, 02t 021!
B’il 0452 ) eit- e . gin
0n1 07»2 ) eﬂl 01;11

When n = 4, in addition-to the above schematic distribution of
varieties showing their association there remains.a possibility of the

following scheme of association for the varieties of (5.5). Whether -

any design ‘belonging to (5.5) can-actually be constructed with this

association scheme has not yet been looked into. If such a design be .

possible to construct then obviously the converse of the Theorem 3 will
not hold good in that case. °

Corollary—The p.b.i.ﬁ. design with parameters
v=8 b=10, r =5, k=4,
=2 n==4 ny,=1, )\1=3,..)\2=2, Ay =1,
piy=| 0 0 1 pyy = 0 2 0 po= 2.0 0

04 0| 2 0 1 0 4 0
1.0 0, 100 1000

has just two independent solutions—one aﬁne resolvable and the other
with only one replication of all varieties, as Nandi. (1946 b) has shown
that the b.ib. design v=8,b=14,r =7, k=4, A =3 has just two
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independent solutions (namely [y] and [B,]) with L > 2 replications of
all varieties.

6. Shrikhande (1952 b) has pointed out that by omitting"a com-
plete replication from the affine resolvable design v =2, b = 52 L S,
r=s+1, k=s, A=1, and the treatments lying in any n (< s — D
“blocks of the omitted replication,” we get a group divisible design with
v=ys(s—n), b=s% r=s, k =5 —n, where the y varietics can be
divided into s — »n groups of s each, where any two treatments of the
same group do not occur together in any block, whereas any two treat-
ments coming from different groups occur together in just one block.
Now I shall prove a theorem which is more general than the result
obtained by Shrikhande.

Theorem 4.—If we have a solution of a b.i. b design with parameters
(D) v=n*n—-1t+n% b=nmt+n+1), r=n+4n-+]l,
=n(n—1)t+n, A=nt+ 1, such that there is a set of n blocks
providing a complete replication of all varieties, then by suppressing the
set of n blocks and the varieties occurring in any n —L (1 < L<n)
blocks of the set, we shall always get a p.bi.b. design with parameters

"=L{nn—Dt+n}, bV=n*@m+1),r=nmt+1),
| K =L{n—11t+ 1}
m=n{n—10t+13(L—-1), n,=@m—1) (z + 1),

N =nt+ 1,2 = nt,

1 —
Py =

n{n— e+ 1L —2) @ —1) (at+ 1)
(n—1) (nt + 1) ”
Py=n{e—1 41} &1 S0
o (=1 (1) —1 H

" Proof—It has been shown elsewhere by the author (Roy, 1952)
that if a b.i.b. design belonging to the series (D) has a set of #n blocks
providing a complete replication of all varieties, then each block of
the set has an equal number of varieties [namely (n — 1) ¢ 4 1] in
common with each of the blocks not in the replication. From this
fact and Lemma I, the proof of the above theorem follows.

We shall conclude by proving a theorem regarding an affine resolv-
able arrangement from which.some interesting properties about the
b.i.b. design v=8,b=14,r=7, k=4, A =3 will follow.
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Theorem 5.—Any affine resolvable ar)'angement with v=2_8, b =06,
r=23, k=4 is a p.b.i.b. design with parameters '

n1=1, n2=6, A1:‘3, A2:1,

00 =] 0
~ | ) 6.1

Plj:’":\
L0 6 | 1

) or
mo=3 =3 my=1, &, =2 =1, 4 =0,
pl=10 02 0y pr=[2 0 1| pi=1[0 3 0
2 0 1 020 30 06.2
o 1of, f1o0o0f 00 0

Proof—Let us consider about any variety ¢;. Let B, (i=1,2,3)
be the block belonging to the i-th replication in which ¢, occurs and
B,, be the other block of the i-th replication. Suppose the contents
of the blocks By; and By are ($idopsd,) and (dsdeprps) respectively.
As every block of a replication has exactly two varieties in common
with each of the blocks not in the replication, any two of the blocks
Bi1, By and B, have exactly one variety other than ¢; in common.
In this connection, only two situations can arise: If ¢, be the second
variety (¢, being the first) common between B;; and By, then By
may or may not contain the variety ¢,.

- (i) Suppose By, By and By have the two varieties ¢; and &, in

~ common. In this case it should be noted that, as every block of a

replication must have exactly two varieties in common, the contents

of the six blocks with respect to the occurrence and non-occurrence of

the other varieties so far as (¢,¢,) and (¢3¢4) are concerned are uniquely
fixed up as follows:—

" Byy ($19:93%4); Bro (‘ﬁs‘ﬁs‘l’v‘lss)
By ($1pebste) s Bas (¢s¢’4¢7¢>s)
By ($1b2b$s) s Bae (¢3¢4¢5¢6) ~(6.3)

(Interchange of the varieties ¢s, ¢s, $7, $s is immaterial so far as the
varieties ¢,, ¢, $3 and ¢, are concerned.)

The affine resolvable arrangement (6.3) is obviously the p:b.i.b.
design with parameters - (6.2).

e T T
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(ii) Suppose By; and B,; have the two varieties ¢, and ¢, in common
but By does not contain ¢,. As B, must have exactly two treatments
in common with all the blocks except B, without loss of generality
the contents of the six blocks can be taken as

By ($1656390) 5 By ($sbedrds)
By ($1hspsbe); Boosbadids)
Bgy (1839567) 5 Bas (hobadesbs)

Except interchange of treatments, this affine resolvable arrangement
is uniquely fixed up and is a p.b.i.b. design with parameters (6.1).

Corollary 1—Any R (2< R< 6) replications of any solution of
the b.i.b. design v =8, b =14, r —7 k =4, A = 3 is an affine resolv-
able p.b.i.b. design.

Corollary 2—By omitting R (1<K R<5) replications from any
solution of the b.i.b. design v=28,.b=14, r =7, k =4, A =3, we
shall always be left with a p.b.i.b. design (which may or may not be .
resolvable). . _
SUMMARY

The present investigation deals with combinatorial relation between
certain balanced and partially balanced incomplete block designs,
the whole argument being based on-the result that addition (or sub-
traction) of a partially balanced incomplete block design to (or from)
a balanced incomplete block design with the same number of varieties
and the same block size leads to a partially balanced incomplete block
design. This is in continuation of the two earlier communications
of the author—one in the Bulletin of the Calcutta Mathematical Society
and the other in ¢ Sankhya’, the Indian Journal of Statistics, in which
duality relation between these two types of designs have fully been dis-
cussed. The object of all these studies were to examine how the two
types of designs—namely balanced and partially balanced incomplete
block designs are related.

My thanks are due to Mr. H. K. Nandi of the Calcutta University
for kindly looking into the results of this paper, to Dr. P. K. Bose of
the said University and -Dr. S. C. Seal of the All-India Institute of
Hygiene and Public Health Calcutta, for their kind interest in my work.
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